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Faced with the threat of identity leakage during voice data publishing, users are engaged in a privacy-utility dilemma when
enjoying the utility of voice services. Existing machine-centric studies employ direct modification or text-based re-synthesis
to de-identify users’ voices but cause inconsistent audibility for human participants in emerging online communication
scenarios, such as virtual meetings. In this paper, we propose a human-centric voice de-identification system, VoiceCloak,
which uses adversarial examples to balance the privacy and utility of voice services. Instead of typical additive examples
inducing perceivable distortions, we design a novel convolutional adversarial example that modulates perturbations into
real-world room impulse responses. Benefiting from this, VoiceCloak could preserve user identity from exposure by Automatic
Speaker Identification (ASI), while remaining the voice perceptual quality for non-intrusive de-identification. Moreover,
VoiceCloak learns a compact speaker distribution through a conditional variational auto-encoder to synthesize diverse targets
on demand. Guided by these pseudo targets, VoiceCloak constructs adversarial examples in an input-specific manner, enabling
any-to-any identity transformation for robust de-identification. Experimental results show that VoiceCloak could achieve over
92% and 84% successful de-identification on mainstream ASIs and commercial systems with excellent voiceprint consistency,
speech integrity, and audio quality.
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1 INTRODUCTION
Recent decades have witnessed voice input becoming one of the most prevalent methods widely deployed in
various services. Richer functional utility, including automatic speech transcription, efficient voice searching, and
live language translation, thus gradually enables humans to enjoy a natural but much more intelligent experience.
Especially under the shock of COVID-19 pandemic, people have to shift to online platforms (e.g., Zoom [66],
Microsoft Teams [40], Google Meet [24]) for remote work and virtual meeting, where voice services, including
real-time speech note and automated speaker annotation, greatly facilitate the communication and collaboration
efficiency. However, behind the powerful utility of voice services, the privacy risks of voice data publishing
raise extensive public concerns. Many leading tech giants are collecting and storing users’ voices in practice
[25, 39] or even eavesdropping on users’ conversations without any consent [22, 57]. This exposes users to the
risk of identity leakage by specialized Automatic Speaker Identification (ASI) tools [29, 41], which can extract
voiceprints after listening to only 8∼10 words [5]. Such voiceprints may be used to disclose Personal Identifiable
Information (PII) for targeted advertisement [45] by user profiling or even malicious impersonation.
Caught in such a dilemma between the high utility of voice services and personal identity privacy, voice

de-identification is proposed to eliminate individual traits while maintaining the linguistic content for other
downstream tasks (e.g., Automatic Speech Recognition, ASR). Related studies focus on the voice conversion
[2, 20, 27, 30, 38, 42, 46, 47, 54, 58, 59, 64] or text-to-speech re-synthesis [3, 31, 47] to transform or exclude individual
features in voices. However, these methods are designed for machine-centric tasks, i.e., protecting user identity
against ASI while remaining correct speech transcripts from ASR, ignoring human-centric experiences, i.e., the
perceptual quality of de-identified voices significantly declines due to the inconsistent voiceprint and severe
distortion. This significantly downgrades the user experience of human listeners and cause misunderstandings
during interpersonal interactions including virtual meeting, social media publishing, and instant messaging, thus
neglecting the speech utility.
Toward this end, we take a different viewpoint to balance the speech utility and identity privacy of voice

services. Inspired by the strong threat to learning-based automatic systems and the excellent imperceptibility to
humans, we introduce adversarial examples [7, 8, 23, 36, 65] to conceal speaker identity while remaining speech
integrity and perceptual consistency, which serves as a more ideal de-identification tool. However, applying
adversarial examples to voice de-identification is also a challenging task. On the one hand, existing methods [1, 9–
12, 35, 48, 50, 60, 63] generate additive adversarial perturbations with amplitude normalization or psychoacoustic
masking to constrain the perturbation audibility, which either induces perceivable high-frequency artifacts [50]
or is easily corrupted by well-designed filters [18, 28], making them inapplicable for voice de-identification. On
the other hand, it’s still challenging to resist re-identification attacks with partial or full knowledge about the
de-identification [55].

To address the perceivable artifacts caused by additive perturbations, we revise the channel distortion of sound
propagation, and propose a novel convolutional adversarial perturbation. Theoretically, apart from the ambient
additive noises, the channel interference of airborne sound also includes its own delayed reflections due to the
multi-path effect. These reflections can be quantified by a Room Impulse Response (RIR) that convolves with
the dry voice and behaves as a natural reverberation. Hence, it is more difficult for human to discern them
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as an abnormal signal. Inspired by this observation, we wonder whether the RIR can be carefully crafted as a
convolutional adversarial perturbation to conceal user identity while being transparent for human audibility. In
addition, unlike existing methods that transforms users’ identity to a pool of collected real speakers, we also
propose to synthesize pseudo targets using generative models to guide the adversarial example generation. This
could improve the identity diversity and unlinkability of de-identified voices under re-identification and also
reduce the storage overhead for practical deployment.

To achieve these, we propose VoiceCloak, a non-intrusive voice de-identification system. First, different from the
additive adversarial perturbations, VoiceCloak injects convolutional adversarial perturbations to de-identify voices
while avoiding perceivable artifacts. By reshaping the convolutional adversarial perturbations into real-world RIRs,
VoiceCloak approximates the perturbation injection to a natural reverberation effect, remaining the voiceprint
consistency, speech integrity and audio quality for human participants. Second, to provide diverse targets for
de-identification with limited resources, VoiceCloak pre-trains a lightweight conditional variational auto-encoder
at the embedding level. With this generative model, users can synthesize any desired target embeddings on
demand, which improves the diversity of de-identified voices. Finally, VoiceCloak adopts a triplet loss architecture
for iterative perturbation construction, whose input-specific manner empowers VoiceCloak any-to-any identity
transformation, enabling any source user to conceal his/her identity among a large group of different target
speakers. Experimental results show that VoiceCloak could achieve effective voice de-identification on mainstream
ASIs and commercial systems with satisfactory speech recognition and perceptual quality. The de-identified voice
examples are provided at the demo page 1.
Our contributions are highlighted as follows:
• To the best of our knowledge, VoiceCloak is the first work to employ convolutional adversarial examples to
realize voice de-identification, which achieves a good balance between the privacy and utility of voice services.
• We propose a novel convolutional adversarial example method to modulate adversarial perturbations into
real-world RIRs, which improves the perceptual consistency in terms of the voiceprint, speech content, and
audio quality, realizing a non-intrusive voice de-identification.
• We design a triplet loss architecture for input-specific perturbation construction and develop an embedding-
level conditional variational auto-encoder to sample diverse target embeddings on demand, enabling any-to-any
identity transformation for robust voice de-identification.
• We conduct extensive experiments against four mainstream and commercial ASIs on two voice datasets.
The results show that VoiceCloak achieves over 92% and 84% successful de-identification on mainstream and
commercial ASI systems with a word accuracy drop of less than 10%, reaching a Mel cepstral distortion of 5.13dB
and a short-time objective intelligence over 0.81. The subjective evaluation also shows excellent perceptual
quality with a mean opinion score over 4.25.

2 PRELIMINARY
In this section, we illustrate the voice de-identification system and threat model and identify the key design goals
of privacy-utility balanced de-identification. To fulfill the design goals, we propose VoiceCloak and introduce its
basic idea with a high-level overview.

2.1 System and Threat Models
Fig. 1 shows the system and threat models. In a voice service, a user’s raw voice is first captured by devices, such
as having a virtual meeting on online applications, sharing videos on social media platforms, or interacting with
personal voice assistants. The captured voices are transmitted not only to human participants (e.g., conference
audience, social friends) but also to a cloud server for specific services (e.g., ASR). We assume the adversary can
1https://zju-muslab.github.io/projects/voicecloak
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Fig. 1. System and threat model.

access the user’s voice data on the cloud server, such as an external hacker, an internal curious data analyst, or
even the service provider itself. With the collected voice data, the adversary can exploit ASI tools to extract users’
voiceprints and explore speaker identities. Specifically, the adversary may build a pool of speaker models via ASI
with available voice recordings from other sources, where the adversary may also retrieve some background
or even identifiable information about these victim candidates. And then the adversary can identify a specific
person by matching his/her utterance with the stored speaker models. For example, malicious service providers
or third-party data consumers can link authenticated (with PII) and unauthenticated (without PII) user accounts
by comparing the speaker models of collected voices from different applications. Telecom companies driven by
ulterior motives can easily infer the identity of a public utterance by matching its voiceprint to those of stored
recordings connected with a phone number. And curious individuals can also crawl massive voice data attached
to informative user profiles on the Internet without much effort to examine the identity of target persons. Once
the user’s voiceprint is exposed, it may be exploited to make user profiles for precise advertising, be shared with
third parties for commercial purposes, or even be cloned to craft DeepFake voices.
To protect the user identity privacy while maintaining voice service utility, this work aims to design a guard

APP at the user side for voice de-identification. Considering the great threat to neural networks and excellent
imperceptibility of adversarial examples, we intend to turn the powerful well-crafted examples into a new
privacy-preserving tool to protect speaker identity from leakage to ASIs when using convenient voice services.
We assume the guard APP is installed in advance and runs in the background on the user’s device. Before the raw
voice is uploaded to the cloud, the guard APP is invoked and imposes a subtle perturbation on the raw voice
for de-identification. The APP can be set to automation activated by microphone use events, be plugged in the
voice input editor, or integrated into the operating system. We discuss the different deployment modes in Section
5. Then the de-identified voices are expected to not only conceal the user identity from ASI and yield correct
transcript after ASR, but also maintain perceptually consistent in speaker voiceprint, speech text and audio quality
for human participants. This non-intrusive de-identification scheme enables users to balance identity privacy
and service utility. In online voice publishing scenarios such as virtual meetings and instant messaging, users
can de-identify their voices while keeping voiceprint consistency for normal interpersonal communication. In
offline voice post-processing scenarios such as taking Vlogs and sharing singing, users can conceal their identity
without impairing the perceptual quality of local audio before uploading them to public platforms.

Blocked by our voice de-identification scheme, the adversary may further take measures to uncover speaker
identities from the de-identified voices, i.e., Speaker re-identification. In this case, the adversary has full knowledge
about the de-identification strategy and implementation details, with which the adversary performs the same
processing on collected clean voices to re-identify the de-identified voices [55]. By considering these advanced
attacks with strong capability, our de-identification aims to support more robust protection for users.
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2.2 Design Goals
Traditional voice de-identification schemes are only designed for affecting intelligent systems, i.e., preserving
users’ identity from disclosure by ASI, and maintaining correct transcription after ASR. Unlike such machine-
centric solutions, our work turns to focus on a user-centric voice de-identification to realize a privacy-utility
trade-off, which should not only maintain the correct transcription after ASR, but also need to fulfill the following
key design goals to improve user experience:
• Voiceprint consistency. During the interpersonal interaction between users and other human participants, it
is necessary to have the users’ voiceprints perceptually consistent before and after the de-identification, for
avoiding misunderstandings of conversation contexts.
• Speech integrity. To minimize the interference in normal communication between users and human partici-
pants, the de-identified voices are required to maintain integral linguistic content recognized by humans.
• Audio quality. For a non-intrusive user experience, the de-identification should produce high-quality audio
without perceivable distortion.

2.3 Motivation and Challenges
To fulfill the design goals achieving the privacy-utility balance of voice services, we propose a novel adversarial
example-based voice de-identification scheme. Instead of directly manipulating the voiceprint, we are inspired by
the adversarial examples’ the strong threat to deep neural networks and excellent imperceptibility to human
ears. Based on the observation, its basic idea is to inject subtle perturbations on raw voices to generate audio
adversarial examples as a de-identification tool for tackling the privacy-utility dilemma, which transforms the
digital identity for deceiving ASIs while remains the acoustic characteristics for human perception.
However, applying adversarial examples for voice de-identification is not a straightforward way, due to the

following challenges: (1) Perceivable and fragile additive perturbation. Most existing methods follow the paradigm
of additive adversarial perturbation, i.e., generating and overlaying adversarial perturbations on original voices
to derive adversarial examples. To suppress the audibility of such additive noises, amplitude normalization
[9, 10, 12, 35, 63] is widely applied to confine their loudness, but still induce perceivable distortions, especially
high-frequency artifacts [50]. Following studies [1, 11, 48, 50, 60] turn to apply psychoacoustic masking to
construct inaudible perturbations below the hearing threshold of the human auditory system. But unfortunately,
a recent work [18] has demonstrated that such perturbations can be easily filtered out by a simple mask operation
based on the same psychoacoustic principle. Hence, these additive adversarial examples are either easily noticed
by human beings or corrupted by well-designed filters, making them inapplicable for voice de-identification.
(2) Adaptive speaker re-identification. As mentioned in the threat model, the transparency and availability of a
voice de-identification scheme inform the adversary of its internal mechanism and detailed implementation. This
may be further exploited by the adversary to re-identify the original identity of users [55]. Therefore, a new
non-intrusive, and robust solution to voice de-identification is highly desired for balancing the privacy and utility
of voice services.

3 VOICECLOAK DESIGN

3.1 System Overview
To solve the aforementioned challenges, we propose VoiceCloak, a non-intrusive and robust voice de-identification
system. Fig. 2 shows the system overview of VoiceCloak, which consists of three components.
To reduce the perceivable artifacts resulting from additive perturbations, the Convolutional Perturbation

Injector reshapes a novel convolutional adversarial perturbation to a real-world room impulse response to
produce adversarial examples. This modulates the perturbations into the natural reverberation effect of airborne
sound propagation, thus maintaining the perceptual characterastics in voice. Moreover, instead of storing a
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pool of real target voices as previous studies, the Pseudo Target Sampler pre-trains a lightweight conditional
variational auto-encoder at the embedding level to sample diverse targets on demand. By explicitly modulating
prior identity knowledge to the generative model, the sampler could learn a compact speaker identity distribution
in the latent space, and sample the embeddings of any target even a pseudo speaker as instances for perturbation
optimization, which improves the diversity and unlinkability of de-identified voices. With the original voice
and pseudo speaker embedding, theMarginal Triplet Optimizer adopt a triplet loss architecture to optimize
adversarial examples in an input-specific manner. This enables any source user to disguise a large group of target
speakers in different utterances, thus further increasing the difficulty of speaker re-identification. Consequently,
the adversarial examples would be identified as different target speakers by ASI while preserving the correct
transcription after ASR.

3.2 Convolutional Perturbation Injector
Compared with voice conversion and speech re-synthesis that directly modify voiceprint or generate audio with
significant distortions, VoiceCloak imposes subtle adversarial perturbations on raw voices, which remains a
perceptually consistent voiceprint, content, and quality for human participants while effectively deceiving ASIs.
Unlike typical additive adversarial perturbations that either induce perceivable artifacts or are easily filtered
out, we propose a novel imperceptible perturbation construction approach to minimize intrusiveness to human
participants.
Theoretically, the over-the-air propagation of sound waves involves two kinds of channel interference, i.e.,

additive noise and convolutional reverberation. Different from the typical adversarial example methods that
impose perceivable additive noises on original voices, we turn to explore the covolutional reverberation. The
reverberation is caused by the multi-path effect during the sound propagation in physical space. As shown in
Fig. 3, in an enclosed room, the sound waves coming from the transmitter propagate omnidirectionally so that
the received signal at the receiver mainly includes: (1) the waves travel through the direct path; (2) the echoes
reflected from surrounding walls with different delays; (3) the ambient noise. Such a roughly linear time-invariant
process can be quantified as a convolution on the original voice with a Room Impulse Response (RIR) as shown
in Fig. 4. As a result, the RIR-convolved speech exhibits a reverberation effect and is difficult to be distinguished
as an anomalous signal by humans. Inspired by this observation, we propose to conduct RIR-like convolutional
adversarial perturbations for realizing imperceptibility.
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Fig. 3. Illustration of multi-path effect.
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Specifically, unlike the additive perturbation scheme, i.e, x′s = xs + 𝛿 , we convolve the perturbation 𝛿 and
original voice xs to produce adversarial examples, i.e., x′s = xs ∗ 𝛿 . For each sampling point, we have:

x′s (𝑛) =
𝑇∑︁
𝑡=0

xs (𝑡) · 𝛿 (𝑛 − 𝑡). (1)

This indicates that each sampling point of our adversarial example is derived from the weighted combination of
the past sampling points of the original voice, thus leading to less artifact and distortion. Moreover, according to
the property of the convolution operation, we have:

FFT(xs ∗ 𝛿) = FFT(xs) × FFT(𝛿), (2)
which means the convolution in the time domain is equivalent to multiplication in the frequency domain. In
other words, our convolutional perturbation is essentially a filter, which determines the significance of different
frequency components in the original voice. This filter can serve as a promising approach to manipulating
acoustic features (i.e., pitch and harmonics) in voices for de-identification. Then we introduce the real-world RIR
ℎ as a template to guide the construction of convolutional adversarial perturbations. Specifically, we penalize the
perturbation change in the following optimization objective:

Lperturb (𝛿) = ∥𝛿 − ℎ∥𝑝 . (3)
In our implementation, 𝐿2 normalization is adopted according to empirical studies. By incorporating this objective
into optimization, we reshape the convolutional adversarial perturbations as real-world RIRs to approximate a
natural reverberation effect.

Benefiting from such RIR-like convolutional perturbations, we can achieve imperceptible voice de-identification,
providing perceptually consistent voiceprint, integral speech, and audio quality for human participants.

3.3 Pseudo Target Sampler
To realize a sufficiently diverse de-identification, previous work collects and stores a pool of voices from real
target speakers, whose speaker embeddings are also extracted and updated frequently. To reduce the storage
and calculation overhead while providing diverse targets, we propose a lightweight pseudo target sampler to
synthesize targets for guiding the perturbation construction.
In order to generate samples with desired speaker identity as targets, we employ a Conditional Variational

Auto-Encoder (CVAE), for its strong ability to model continuous distribution and learn semantic representation.
Moreover, to avoid redundant voice-embedding transformation, we design an embedding-level 𝛽-CVAE to serve
as a pseudo target sampler in VoiceCloak. As shown in Figure 5, we first extract speaker embeddings from a
open-source corpus with an extractor. Following the framework of mainstream ASIs [16, 52], the extractor
converts the voice in the corpus to Mel Frequency Cepstral Coefficients (MFCC) [21] as acoustic features. The
acoustic features are fed to a Time Delay Neural Network (TDNN) to build the frame-level temporal context,
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Fig. 5. Network architecture of the embedding-level 𝛽-CVAE.

and then input to residual blocks to model the global channel interdependences. Finally, a statistic pooling is
performed to aggregate utterance-level features as the output speaker embedding. This embedding extraction
serves as a data preparation process, where we employ a state-of-the-art ASI (Ecapa-TDNN [16]) as the extractor
to generate a large number of speaker embeddings to construct an embedding dataset for the following 𝛽-CVAE
training.
Taking the extracted speaker embedding e as input, the 𝛽-CVAE generates a new embedding e′ through an

encoder-decoder architecture, where the encoder 𝑞𝜙 squeezes the embedding x into a latent variable z, and the
decoder 𝑝𝜃 reconstructs a new embedding e′ through deep neural networks. To learn the underlying identity
semantics, the speaker embedding e is concatenated with the one-hot embedding of the corresponding identity
label yt and then fed to the encoder. The encoder stacks multiple down-sample blocks consisting of convolution
layers and batch normalization with LeakyReLU activation. According to the variational interference, the encoder
output z is assumed to follow a Gaussian distribution: 𝑞𝜙 (z|e, y) ∼ N (𝜇, 𝜎2I), where the mean vector 𝜇 and the
diagonal covariance 𝜎2I are derived from the following two parallel linear layers. After that, the latent variable
z can be sampled from the distribution, which is reparameterized using the reparameterization tricks [32] in
practice: z = 𝜇 + 𝜎 ⊙ 𝜖 , where 𝜖 ∼ N(0, I). Similar to the encoder input, we also explicitly modulate the prior yt
into the latent variable z as the input of the decoder. The decoder reforms the latent vector by a linear layer, and
then reconstructs a new embedding e′ with multiple up-sample blocks, each of which consists of deconvolution
layers and batch normalization with LeakyReLU activation. Finally, the entire generative model can be trained
with:

L𝛽−𝐶𝑉𝐴𝐸 = E[∥e − e′∥22] + 𝛽𝐾𝐿(N (z|𝜇, 𝜎2I)∥N (z|0, I)), (4)

where the first term is the reconstruction error, restricting the reconstruction bias of the output embedding,
and the second term is the KL divergence regularization, forcing the latent space to approximate a continuous
zero-mean unit-variance Gaussian. And the weight 𝛽 is used to balance the reconstruction quality and the latent
space continuity.
With the well-trained 𝛽-CVAE, VoiceCloak could generate diverse target speaker embeddings for adversarial

perturbation construction. Specifically, given the desired identity label, the target embedding can be derived from:
(1) reconstruction: the generator encodes the speaker embedding and then decodes the latent variable to a new
embedding with the corresponding identity. (2) sampling: the generator directly samples a stochastic variable in
the latent space and synthesizes a new embedding with only the decoder. (3) interpolation: the generator performs
semantic interpolation between latent variables of different speakers to synthesize new embeddings of unreal
speakers. As a result, VoiceCloak could sample diverse speaker embeddings with the desired identity from a
learned Gaussian distribution without any voice input, or even create unreal embeddings as "pseudo speaker" for
improving the identity diversity. Moreover, only the pre-trained decoder module is needed for actual deployment,
thus significantly reducing the demand for computing and storage resources.
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3.4 Marginal Triplet Optimizer
With the sampled pseudo target, we optimize the convolutional adversarial perturbations to impose on the user’s
raw voice for de-identification.

Typically, there are two different manners of adversarial perturbation optimization, i.e., the non-targeted and
targeted manners. The non-targeted manner tends to yield highly-similar adversarial examples that may be
re-identified by the adversary, while the targeted adversarial examples may still be linked to the source user
identity due to the unknown enrollment set of adversary’s ASI. Therefore, we introduce a triplet loss architecture
[51] to combine the non-targeted and targeted manners for effective voice de-identification.

The core idea of triplet loss is to quantify the distance among samples in the latent space, and project the anchor
and positive samples in the nearby region, whereas the anchor and negative samples are far away from each
other. Specifically, we define the speaker embeddings of the source voice and the sampled target embedding (i.e.,
𝑓 (xs) and et) as the negative and positive samples respectively, and regard the speaker embedding of adversarial
example (i.e., 𝑓 (xs ∗ 𝛿)) as the anchor sample, where 𝑓 (·) denotes the extractor to calculate speaker embedding.
Then, we build a triplet and derive the marginal triplet loss:

Ltriplet (𝛿) = max{𝐷 (𝑓 (xs ∗ 𝛿), et) − 𝜅1, 0} +max{𝜅2 − 𝐷 (𝑓 (xs ∗ 𝛿), 𝑓 (xs)), 0}, (5)

where 𝐷 (·) refers to the distance metric of speaker embeddings (e.g., PLDA [15], cosine distance), 𝜅1 and 𝜅2
are distance margins. With this objective, we iteratively optimize the adversarial example in a gradient descent
way under the explicit guidance of the triplet, enabling the user’s identity to be close to another target speaker
while far away from the source user to the greatest extent. Combining with the perturbation penalty loss in
Equation (3), we derive the complete optimization objective:

L(𝛿) = Ltriplet (𝛿) + 𝛼Lperturb (𝛿), (6)

where 𝛼 is used to control the penalty weight. Finally, we summarize our adversarial perturbation construction
process for voice de-identification in Algorithm 1 in Appendix A.2.

Since the adversarial example is constructed from a specific source and target as needed, such an input-specific
manner empowers VoiceCloak any-to-any voice de-identification. On the one hand, this manner allows a source
user to disguise a group of different speakers among different voices by sampling different pseudo targets to build
triplets, further increasing the difficulty of identity linkage by ASIs. On the other hand, any source users could
directly deploy and apply VoiceCloak without any additional enrollment, enabling a user-friendly experience.

4 EVALUATION

4.1 Experimental Setup
4.1.1 Speech Datasets. As shown in Table 1, we first train the pseudo target sampler of VoiceCloak on Lib-
riSpeech(train) [43] with 251 target speakers. Besides, we enroll another 40 speakers from LibriSpeech(test) and
107 speakers from VCTK(v0.80) [14] as users of VoiceCloak, covering a wide range of various accents, professions,
and ages. Hence, a total of 7,579 voices from the 147 users (66 males and 81 females) ranging 0.17s∼34.96s are
used to test ASI systems and construct adversarial examples. Note that the 147 source users and the 251 target
speakers are disjoint, i.e., the actual users are completely unseen for our de-identification. In addition, we use
real-world RIRs from REVERB2014 [33] for convolutional perturbation initialization.

4.1.2 ASI Systems. As shown in Table 2, we adopt multiple State-Of-The-Art (SOTA) speaker identification
models as target ASI systems. Among them, the pre-trained DeepSpeaker [34] is derived from the unofficial
implementation1 due to the lack of original open-source code, while the X-Vector [52] and Ecapa-TDNN [16] are

1https://github.com/philipperemy/deep-speaker
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pre-trained by SpeechBrain [49]. Moreover, we also evaluate VoiceCloak on a commercial ASI system iFLYTEK
[29] through the provided HTTP API, whose implementation details are totally unknown to us.

4.1.3 Implementation Details. Table 4 in Appendix A.1 presents the network structure of 𝛽-CVAE. We extract
speaker embeddings from LibriSpeech(train) for training the 𝛽-CVAE, where we set 𝛽=2 to optimize Equation (4)
with an Adam optimizer (learning rate=0.001) for 30 epochs to derive a compact distribution. After the training,
we only remain the well-trained decoder to sample target embeddings. Then we randomly select real-world RIRs
to construct convolutional adversarial perturbations for each test voice according to Algorithm 1. To alleviate
the reverberation, the length of RIR-like perturbation is set to 0.2s according to empirical study. We use cosine
distance as 𝐷 (·), and optimize Equation (6) with 𝛼=5000, 𝜅1=0.2, 𝜅2=0.8, 𝜂=0.001 for 200 steps until early stopping
with a patient of 10. The well-crafted perturbations are normalized and convolved with the user’s voices to
produce de-identified samples.

4.1.4 Baselines. We compare VoiceCloak to SOTA works in voice de-identification, including the frequency
warping-based VoiceMask [46], disentangled representation-based voice conversion (DisVC) [13] as well as
a typical additive adversarial example method PGD [36]. Specifically, the warping factor |𝛼 | is sampled from
[0.08,0.10] as recommended in VoiceMask, random targets from LibriSpeech(test) are selected for DisVC, and the
perturbation scale is constrained below 0.01 for PGD and optimized in a non-targeted manner.

4.1.5 Metrics. We adopt multiple objective and subjective metrics to evaluate VoiceCloak in terms of privacy and
utility:

• De-identification Success Rate (DSR): DSR = 𝑋
𝑌
, where 𝑋 and 𝑌 are the numbers of test voices and successful

de-identification respectively.
• Word Accuracy Drop (WAD): WAD =

𝐶𝑎−𝐼𝑎
𝑁
− 𝐶𝑏−𝐼𝑏

𝑁
, where 𝑁 is the sentence length, 𝐶𝑏, 𝐼𝑏 and 𝐶𝑎, 𝐼𝑎 refer

to the number of correct words and extra inserted words in the transcript before and after de-identification
respectively. We employ an end-to-end ASR pre-trained by SpeechBrain to transcribe speech and calculate the
WAD.
• Mel Spectral Distortion (MCD): an objective audio distortion measurement that quantifies the distance between

the MFCCs of the reference and target voices (𝑚𝑐𝑟 ,𝑚𝑐𝑡 ): 10
ln 10

√︃
2
∑24

𝑖=1 ∥𝑚𝑐𝑟 (𝑖) −𝑚𝑐𝑡 (𝑖)∥2. Typically, an MCD
below 8dB is acceptable for ASR systems while between 4.5dB∼6.0dB is needed for voice conversion systems
[26].
• Short-Time Objective Intelligibility (STOI): a widely used metric that is highly correlated with the intelligibility
of the degraded version of the speech. A higher STOI indicates better speech intelligibility.
• Mean Opinion Score (MOS): a numerical measure of the human-judged quality of speech with 5 levels:
excellent(4∼5), good(3∼4), fair(2∼3), poor(1∼2) and bad(0∼1).
• Real-Time Ratio (RTR): RTR =

𝑇𝑐
𝑇𝑑
, where 𝑇𝑐 and 𝑇𝑑 are the time cost and voice duration respectively.

Table 1. Voice dataset statistics.

Dataset #Speaker #Utterance Duration(s)
LibriSpeech(train) 251 27,952 3.00∼24.53
LibriSpeech(test) 40 2,229 3.00∼34.96
VCTK(v0.80) 107 5,350 0.17∼19.28
REVERB2014 36 real-world RIRs 1s

Table 2. SOTA ASI systems.

System Architecture Source
DeepSpeaker ResCNN Reproduction
X-Vector TDNN SpeechBrain

Ecapa-TDNN SE-ResNet SpeechBrain
iFlytek unknown iFlytek
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Fig. 6. Comparison of voice de-identification between VoiceCloak and SOTA methods.
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Fig. 7. Comparison of speech utility between VoiceCloak and SOTA methods.
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Fig. 8. MOS of voices de-identified by
VoiceCloak and SOTA methods.

4.2 Overall Effectiveness
We first evaluate the overall performance of VoiceCloak on voice de-identification and speech utility. In the
experiment, we perform de-identification on the 7,579 voices from the 147 users using VoiceCloak and other
baselines and then feed both the original and de-identified voices to the four ASIs and the ASR for speaker
identification and speech recognition respectively. Then we calculate the WAD, MCD, and STOI for each pair of
original and de-identified voices.

As shown in Fig. 6 and Fig. 7, all the DSRs against the four ASIs on both LibriSpeech and VCTK are about 1%∼5%,
exhibiting their powerful identification ability on the original voices. After voice de-identification, the DSRs of
VoiceMask and DisVC against the four ASIs approach 100% except Ecapa-TDNN, due to their significant voiceprint
manipulation. However, such an intrusive manipulation also lead to extremely high WADs of 18.70%∼44.56% and
MCDs of 9.88dB∼15.09dB as well as low STOIs of 0.26∼0.53. This result indicates severe distortions and poor
intelligibility, which would significantly impair the normal interaction between users and human participants.
This result also suggests that existing de-identification methods overemphasize identity privacy while ignoring
speech utility. By contrast, adversarial example-based PGD and VoiceCloak achieve slight lower but satisfactory
DSRs while remainingWADs below 9.96 and MCDs below 9.50 as well as high STOIs over 0.81, inducing much less
distortion and better intelligibility. Moreover, compared to PGD, VoiceMask achieves a better DSR and MCD but
with a worse WAD and STOI. This also indicates that convolutional perturbations tend to have better effectiveness
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against different ASIs while causing less audio signal distortions, and the additive perturbations tend to preserve
the linguistic-related structure for better integrity and intelligibility.

4.3 Perturbation Non-Intrusiveness
Since the objective metrics (e.g., WAD, MCD, STOI) can not fully reflect the real perception of human beings, we
further conduct subjective experiments to evaluate the non-intrusiveness of VoiceCloak to human perception. We
recruit 50 volunteers (28 males and 22 females) aged 18∼53, who have no hearing disease and are unaware of the
specific de-identification techniques. Note that all the subjective experiments on volunteers are validated by the
Institutional Review Board (IRB) in our university. We have these volunteers participate in our MOS test that
includes a comparing trial and a distinguishing trial.

4.3.1 Comparing Trial. In this trial, the volunteers are asked to listen to 10 pairs of original voices and the
corresponding de-identified voices from VoiceMask, DisVC, PGD, and VoiceCloak respectively, and then report
their intuitive sense of voiceprint consistency, speech integrity, and audio quality respectively. The volunteers’
opinions are recorded as a 5-level MOS and shown in Fig. 8. In terms of voiceprint consistency, We can see
that the MOSs of VoiceMask and DisVC are distributed between 1∼3, which are much lower than those of PGD
and VoiceCloak, indicating that adversarial example-based de-identification preserves perceptually consistent
voiceprint. As for the speech integrity, the MOSs of PGD and VoiceMask approach 5, which also outperforms
VoiceMask and DisVC. Moreover, VoiceCloak achieves the highest MOS in terms of audio quality, further validating
the superior non-intrusiveness of convolutional perturbations.

4.3.2 Distinguishing Trial. In this trial, we first play an original voice for volunteers to refresh their impression
and then play 10 original voices and 10 de-identified voices from VoiceMask, Disentangle-VC, PGD, and VoiceCloak
in random order. For each voice, the volunteers need to determine whether it is original or not. If they regard
the voice as not original, they are further asked to choose a reason for this from several options, i.e., unnatural
voiceprint, illegible text, distorted quality, obvious reverb or provide any other reasons supporting their judgment.
These options and reasons are described in Table 5 in Appendix A.3. We calculate the distribution of test voices
for each reason, as shown in Table 3. We can see that over 45.23% de-identified voices from VoiceCloak while
only 4.87%, 0.00% and 34.14% of VoiceMask, DisVC and PGD are regarded as original. Among the voices that
are regarded as not original, 56.43% from VoiceMask and 36.17% from DisVC are considered to have unnatural
voiceprint, degrading the voiceprint consistency for user experience. PGD performs well in voiceprint and text
preservation but over 32.41% of voices are considered distorted in quality, and volunteers also reported that they
could hear distinct electrical noises in 20.48% of voices from PGD in the other reasons option. Instead, voiceCloak
well balances the voiceprint, text, and quality with only a natural reverberation that does not impair the user
experience too much.

Table 3. Distribution(%) of distinguishing test on voices de-identified by VoiceCloak and SOTA methods.

Method Regard as
Original

Unnatural
Voiceprint

Illegible
Text

Distorted
Quality

Obvious
Reverb Other

VoiceMask 4.87 56.43 4.83 20.95 12.89 0.00
DisVC 0.00 36.17 27.82 24.49 11.13 0.36
PGD 34.14 3.04 0.00 32.41 9.91 20.48

VoiceCloak 45.23 8.45 2.74 13.94 29.61 0.00
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(b) De-identified by PGD.
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(c) Over-the-air.
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(d) De-identified by VoiceCloak.

Fig. 9. Example of original voice, original voice over the air, and de-identified voice by VoiceCloak.
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Fig. 10. DSR and WAD of VoiceCloak with different human voice characteristics.

4.3.3 Spectrum Visualization. To explicitly illustrate the non-intrusive de-identification of VoiceCloak, we present
a visual comparison between original and de-identified voices. As shown in Fig. 9, comparedwith the original voice,
the de-identified voice by PGD results in many irregular artifacts in the high-frequency components, which would
sound like harsh electrical noises. For VoiceCloak, although it exhibits a distinct waveform and reverb trails in the
spectrum, we can observe similar results in the over-the-air voice, which means our convolutional perturbations
successfully approximate RIRs to imitate the natural distortion during over-the-air sound propagation. This
would be perceived as reverberation and does not affect the perceptual quality very much. Hence, the RIR-
like convolutional perturbations could maintain natural audibility and provide a better experience for human
participants.

4.4 Impact Factors
Considering the various usage scenarios of VoiceCloak with different conditions, we further study the impact
of human voice characteristics and external factors. For simplicity, we use X-Vector as the default ASI in this
experiment.

4.4.1 Human Voice Characteristics. To verify the adaptability of VoiceCloak on various persons with different
voice characteristics, we further study the impact of gender, age, and accent. Specifically, we count the DSR
and WAD of 5,350 pairs of original and de-identified voices from 107 users (46 males and 61 females) in VCTK,
covering 15 ages and 11 accents. As shown in Fig. 10(a), the WAD of both genders are similar while the DSR of
females is slightly higher than males. As for the age shown in Fig. 10(b), VoiceCloak realizes high DSRs without
significant difference among ages while only sacrificing about 6.7%∼10.2% of speech recognition performance.
Besides, from Fig. 10(c), we can see that VoiceCloak also provides effective de-identifi-cation across different
accents with a low WAD below 12%. These results demonstrate the adaptability of VoiceCloak to a variety of
human voice characteristics.
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Fig. 12. DSR and WAD of VoiceCloak with different external factors.
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Fig. 13. Score distribution of genuine and imposter trials.

4.4.2 External Factors. Apart from the analysis on the open-source corpus, we also conduct a human study to
explore the impact of different environments, devices and motions. We recruit 10 volunteers (6 males, 4 females)
as our users, and each of them is asked to speak 5 English sentences to 3 laptops (MacBook Air, Lenovo YOGA
C940, and ThinkPad X1 Carbon) and 5 smart phones (Smartisan Nut R1, Oppo Find X, Sony Xperia XZ3, LGWing,
and Huawei Mate40). As shown in Fig. 11, we conduct the experiments in three environments including a dorm,
a meeting room and a canteen with ambient noise levels of 44.9dBSPL, 50.8dBSPL and 71.4dBSPL respectively
(measured by a sound level meter). The users hold the device at a comfortable distance of 0.2∼0.3m while sitting
still or walking slowly, whose voice is recorded by the device and then sent to VoiceCloak for de-identification.
We collect 2,400 voices in total and calculate the DSR with and without de-identification as well as the WAD. As
shown in Fig. 12(a), the original voices can be well identified with DSRs of 7.67% and 6.79% in the dorm and lab
respectively, while there is a DSR degradation of about 6.5% in the noisier canteen. After de-identification, the
DSR of the dorm and lab is around 80% with a similar WAD of about 14%, while the DSR approaches 97% in the
canteen with a higher WAD over 20%, indicating that the ambient noise contributes to voice de-identification but
also distorts speech. As shown in Fig. 12(b) and Fig. 12(c), although there are some differences in DSR and WAD
of different user states and device models, VoiceCloak still greatly increases the DSR with an acceptable WAD.

4.5 Unlinkability Analysis
To validate the unlinkability of speaker identity, we further investigate the score distribution and analize the
embedding visualization of de-identified voices.

4.5.1 Score Distribution. We present the score distribution on X-Vector of Genuine and Imposter trials on the
original and de-identified voices, i.e., the log-likelihood ratios between same-speaker and different-speaker
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hypotheses [56]. Here we further consider the re-identification attack [55] that aims to link the de-identified voice
to the source user. Specifically, the adversary applies the same voice de-identification operations as VoiceCloak
on the enrolled raw voices and then tries to find out the real identity of the incoming de-identified voices
through analyzing their similarity with the enrolled ones. As shown in Fig. 13, the genuine and imposter score
distributions of the original voices are separated from each other, so that the ASI can distinguish them. But after
our de-identification with diverse pseudo identities, the score distribution of genuine and imposter trials overlap
even under re-identification, thus hard to be distinguished and linked by advanced adversaries.

4.5.2 Embedding Visualization. To understand the contribution of identity diversity to de-identification, we
also apply t-SNE to visualize the speaker embeddings of the original and de-identified voices from the 40
LibriSpeech users. As shown in Fig. 14, the de-identified voices are far away from the original voices and mapped
to diverse targets instead of clustering together, further increasing the difficulty for the adversary to link the
de-identified voice to the original user. Hence, VoiceCloak can realize diverse identity transformation and robust
de-identification even under the re-identification attack.

4.6 Resource Cost
4.6.1 Computation Overhead. We implement VoiceCloak on the 8 devices to evaluate the computation and storage
overhead. Specifically, we perform de-identification on 1,000 voices with varying length of 3s∼30s, and record the
speech duration and the corresponding CPU time to derive the average RTR. We find that the RTR on MacBook
Air is 0.93 while those on less powerful Lenovo YOGA C940 and ThinkPad X1 Carbon are 1.34 and 1.65. Due to
the limited computing resource and power consumption, the RTRs on the 5 phones are even higher 5.71∼11.38).
Through further analysis, we find that the RTR is roughly proportional to the voice duration. Considering the
excellent speech and speaker consistency of convolutional perturbations, we slice each voice into multiple 3s
segments and then perform a streaming de-identification. Based on this, we finally reduce the RTRs into 0.54,
0.95, 1.17 on the laptops and 3.35∼6.87 on the phones without loss of effectiveness. Besides, we also find that the
target sampler takes up little CPU time, while the triplet optimizer is the most expensive one (over 95%). This
observation verifies the efficiency of our target sampling design, and encourages us to optimize a more efficient
perturbation construction in the future, i.e., generative construction [62] rather than iterative optimization, which
would further improve the real-time performance of VoiceCloak.

4.6.2 Storage Occupancy. As for the storage cost, instead of preparing hundreds of megabytes of target voices,
VoiceCloak’s target sampler only occupies 13.03M while providing 251 real identities and numerous pseudo
identities. Note that this scale can be further expanded by means of the powerful representation learning of CVAE.
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Thanks to such a lightweight decoder, VoiceClock significantly reduces the storage requirement and enables
practical deployment on different devices.

4.7 Privacy-utility Balance
To better understand the privacy-utility balance of VoiceCloak, we compare it with SOTA methods in terms of
de-identification effectiveness and voice utility using both objective and subjective metrics. Instead of calculating a
simple weighted average on multiple metrics [4], we present the overall performance comparison in a radar figure.
As summarized in Fig. 15, VoiceMask and DisVC achieve excellent de-identification to support reliable identity
privacy protection. However, due to the intrusive voiceprint manipulation, both of them result in poor voice
consistency, speech integrity, and audio quality and are obviously perceptible to human participants, thus largely
degrading the voice utility. Benefiting from the strength of adversarial examples, PGD and VoiceCloak realize
comparative de-identification performance and a significant improvement in voice utility. Moreover, additive
adversarial perturbation-based PGD presents a slight advantage in preserving speech integrity, but still induces
unsatisfactory audio quality and can be easily perceived by human listeners. Especially in the distinguishing test,
over 20% volunteers report that they can hear obvious electronic noises from the PGD de-identified samples. This
is due to the high-frequency artifacts produced by additive perturbations, which also impair the voice utility. By
contrast, VoiceCloak utilizes a convolutional adversarial perturbation to approximate natural reverberation, which
not only de-identifies voices effectively but also remains excellent voiceprint consistency, speech integrity, and
audio quality. More importantly, human listeners can not easily distinguish the de-identified voices by VoiceCloak
from original samples, further demonstrating its superior non-intrusiveness. To sum up, VoiceCloak does not
simply pursue the ultimate de-identification performance but pays more attention to balancing the privacy and
utility for improving user experience in practical usage.

5 DISCUSSION
Deployment mode in practice. VoiceCloak acts as a voice filter at the user side and can be deployed in two modes.
The first mode is to integrate VoiceCloak into the Operating System (OS) as a basic facility for the full control of all
voice input, which allows trusted APPs to access raw voices while feeding untrusted ones the de-identified voices
only. This ensures a system-level security guarantee of users’ voiceprints but requires additional OS modification.
In the second mode, VoiceCloak is installed as a voice input plugin on the users’ input editor, which performs
de-identification every time the voice input interface is invoked. This requires users to install VoiceCloak in
advance and authorize corresponding permissions.
Possible extension to physical layer. In this work, we focus on speaker de-identification at the digital layer of

voice transmission without any hardware equipment. This enables a user-friendly experience during online
meetings, social interaction, instant messaging, etc. But it is also possible to extend VoiceCloak to the physical layer,
where users’ voiceprints suffer from exposure by stealthy eavesdropping. In this case, except for taking additional
hardware devices for emitting adversarial perturbations, VoiceCloak also needs to cope with several key issues:
(1) Input-agnostic de-identification. Physical-layer protection needs to process live-streaming voices instead of
recorded utterances, so we cannot observe the entire input during de-identification, requiring universal adversarial
perturbations that can generalize on voices with different linguistic texts. (2) Live-streaming processing. To
prevent live-streaming voices from eavesdropping in real-time, all the de-identification operations need to be
done within an extremely short time window, thus raising a higher demand for system efficiency. (3) Channel
interference. The physical injection also requires robust adversarial perturbations that are resistant to channel
interference. We leave the physical-layer extension a research topic and explore potential solutions to these
issues in the future.
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Compatibility with voiceprint authentication. Despite voiceprint-irrelevant voice services (e.g., speech recogni-
tion), users may also rely on voiceprint-based systems, such as WeChat voiceprint lock [61] and Siri personalized
activation [6]. In these cases, these users have to offer their clean voiceprints for accurate authentication, but
VoiceCloak may hinder such normal usages. Hence, a compatibility mechanism between de-identification and
authentication is needed. Considering the fixed wake texts for authentication services usually, a straightforward
solution is to shut down VoiceCloak temporarily when detecting these specific texts, and automatically restore
the protection as soon as the authentication is finished. Another solution may ensure more comprehensive
voiceprint protection, where we can transform users’ voiceprints to the same target speaker for enrollment and
later activation or unlocking. This could enable de-identification and authentication simultaneously.

6 RELATED WORK
Signal processing-based voice de-identification. Early studies [2, 30, 38, 59] on voice de-identification mainly exploit
signal processing techniques (e.g., frequency warping, amplitude scaling, duration warping) to modify the spectral
and prosodic features for manipulating the in-depth voiceprint. However, these methods require parallel source
and target voices to train the voice transformation, i.e., two voices with the same texts and timestamps, limiting
its utility in practice. To address this issue, the following works [37, 44] propose to pre-calculate a set of voice
transformations between multiple pairs of source and target speakers for online de-identification. But the voices
produced by this method are filled with obvious artifacts due to the synthetic speakers. Hence, a new paradigm
based on Vocal Tract Length Normalization (VTLN) [17] is proposed to realize voice transformation without
parallel corpus. Specifically, VLTN-based works [46, 47, 64] stretch or compress the voice spectrum frame by
frame according to a warp function, and synthesize de-identified voices through a waveform vocoder. However,
the invertible warping function used in these approaches is probably employed to recover the original voice by
informed adversaries [55]. This design indicates the intrinsic vulnerability for voice de-identification.

Deep learning-based voice de-identification.With the advances in artificial intelligence, numerous studies turn to
explore voice de-identification based on learning methods. One branch of them [3, 31, 47] integrates speech-to-text
and text-to-speech techniques to transform voices into texts and then re-synthesize de-identified voices, which
eliminates identify information but introduces unacceptable overhead. Another branch [20, 27, 42, 54, 58] proposes
X-Vector-based voice conversion schemes, which replaces the source embedding with the target one in the latent
space of X-Vector. Using a vocoder or a neural source filter, these works could synthesize anonymized voices with
satisfactory quality. However, a pool of speaker voices needs to be pre-collected, and complex target selection
strategies are mandatory to ensure the de-identification performance. These lead to difficulties in practical
deployment on users’ resource-limited devices. More recent studies [19, 53] propose to learn de-identified speech
representation using adversarial training at the user side, but require a redesign of existing service architecture.
Unlike these voiceprint modification or speech re-synthesizing methods, our work aims to design a non-

intrusive and robust voice de-identification system using novel convolutional adversarial examples.

7 CONCLUSION
This paper presents a voice de-identification system, VoiceCloak, which turns adversarial examples as a defense
tool against automatic speaker identification to balance the privacy and utility of voice services. By modulating
convolutional adversarial perturbations into the natural reverberation, we realize non-intrusive de-identification
with consistent voiceprint, integral speech, and excellent quality. We also design a lightweight conditional
variational auto-encoder to generate diverse targets and construct input-specific perturbations through a triplet
loss architecture, enabling any-to-any identity conversion for robust de-identification. Experimental results show
VoiceCloak could effectively de-identify users on mainstream and commercial speaker identification systems,
achieving a privacy-utility balance.
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A APPENDIX

A.1 Network Structure of 𝛽-CVAE
As shown in Table 4, the input D-dimensional speaker embedding is concatenated with a D-dimensional one-
hot embedding of identity label. Such a combined embedding is squeezed to D/4 by the encoder through two
down-sample blocks, each of which includes a 2D convolution layer. After a following full-connected layer, the
encoder learns the D/2-dimensional mean and covariance vector through two parallel linear layers. Through
the reparameterization trick, we derive the D/2-dimensional latent vector and concatenate it with the one-hot
embedding. After that, the decoder reforms the latent vector to 16D-dimensional with a full-connected layer, and
then expand it through two up-sample blocks.

A.2 Perturbation Construction Algorithm
We summarize the whole convolutional adversarial perturbation construction process in Algorithm 1.

A.3 MOS Test Descriptions
In the distinguishing trial, if the volunteers regard the voice as not original, we further require them to select a
reason from several options or provide their own evidence. Table 5 shows the detailed description.
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Table 4. Network structure of 𝛽-CVAE.

Module Block Input→Output Layer Specification

Encoder

Down-sample Block (2,D)→(32,D/2) Conv2d(channel=32, kernel=(2,6), stride=(1,2))
Down-sample Block (32,D/2)→(64,D/4) Conv2d(channel=64, kernel=(1,4), stride=(1,2))
Full-connected Layer (1,16D)→(1,D) Linear(in_features=16D,out_features=D)
Mean Vector (1,D)→(1,D/2) Linear(in_features=D,out_features=D/2)
Covariance Vector (1,D)→(1,D/2) Linear(in_features=D,out_features=D/2)

Decoder

Latent Vector (1,3D/2)→(1,D) Linear(in_features=3D/2,out_features=D)
Full-connected Layer (1,D)→(1,16D) Linear(in_features=D,out_features=16D)
Up-sample Block (64,D/4)→(32,D/2) DeConv2d(channel=32, kernel=(1,4), stride=(1,2))
Up-sample Block (32,D/2)→(1,D) DeConv2d(channel=1, kernel=(1,6), stride=(1,2))

Algorithm 1 Adversarial Perturbation Construction
Input: Extractor 𝑓 (·) with distance metric 𝐷 (·), voice of source speaker xs, label of target speaker yt, real-world

RIR ℎ, pre-trained 𝛽-CVAE decoder 𝑑 (·), penalty weight 𝛼 , distance margins 𝜅1, 𝜅2, learning rate 𝜂
Output: Well-crafted convolutional perturbation 𝛿
1: Normalize the RIR: ℎ ← ℎ

∥ℎ∥
2: Initialize the perturbation: 𝛿 ← ℎ

3: Extract the source embedding: 𝑓 (xs)
4: Sample a target embedding: et ← 𝑑 (yt)
5: for each step do
6: Extract the adversarial embedding: 𝑓 (xs ∗ 𝛿)
7: Calculate the marginal triplet loss: Ltriplet (𝛿)
8: Calculate the perturbation penalty loss: Lperturb (𝛿)
9: L(𝛿) ← Ltriplet (𝛿) + 𝛼Lperturb (𝛿)
10: 𝛿 ← 𝛿 − 𝜂∇𝛿L(𝛿)
11: end for

Table 5. Description of options and reasons in the distinguishing trial.

Option Description

Yes The test audio is the original voice.
No The test audio is not the original voice.

Reason Description

Unnatural Voiceprint The voiceprint of the test audio sounds synthetic but not real human voice.
Illegible Text The text of the test audio is corrupted and hard to recognize.

Distorted Quality The quality of the test audio is distorted.
Obvious Reverb There are reverb echos in the test audio.
Other Reason Any other reasons from volunteers.
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